

Disentangling the roles of dimensionality and cell classes in neural computations

Alexis Dubreuil¹, Francesca Mastrogiuseppe², Srdjan Ostojic¹

1. LNC, Ecole Normale Supérieure, PSL Research University, Paris, France

2. Gatsby Computational Neuroscience Unit, UCL, London

Low-rank, multi-populations RNNs

Introduction

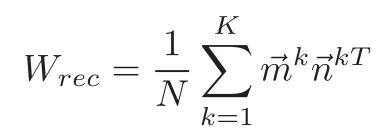
- How the two key concepts of cell classes and low-dimensional trajectories interact to shape neural computations?
- We propose a method which combines artificial neural networks training and a recent theory linking dimensionality and connectivity structure [1].
- We generate network models of low dimensionality and fixed number of cell classes which implement a series of behavioral tasks and allows us to explore the roles played by dimensionality and cell classes in neural computations.

Wout u(t)Wrec

Equations for RNN:

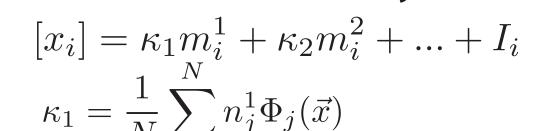
 $\tau \frac{d\vec{x}}{dt} = -\vec{x} + W_{rec} \vec{\Phi}(\vec{x}) + u(t) \vec{W}_{in}$ Network's output $z(t) = \vec{W}_{out}^T \vec{\Phi}(\vec{x}(t))$ with $\Phi_k(\vec{x}) = \tanh(x_k)$

Rank K RNN:



K-dimensional activity:

j=1



Approach:

Single population network [1]: For connectivity vectors \vec{a}, \vec{b}, \dots $a_i, b_i, \dots \sim \mathcal{N}\left(0, \{\sigma_{ab}\}\right)$

P-populations network:

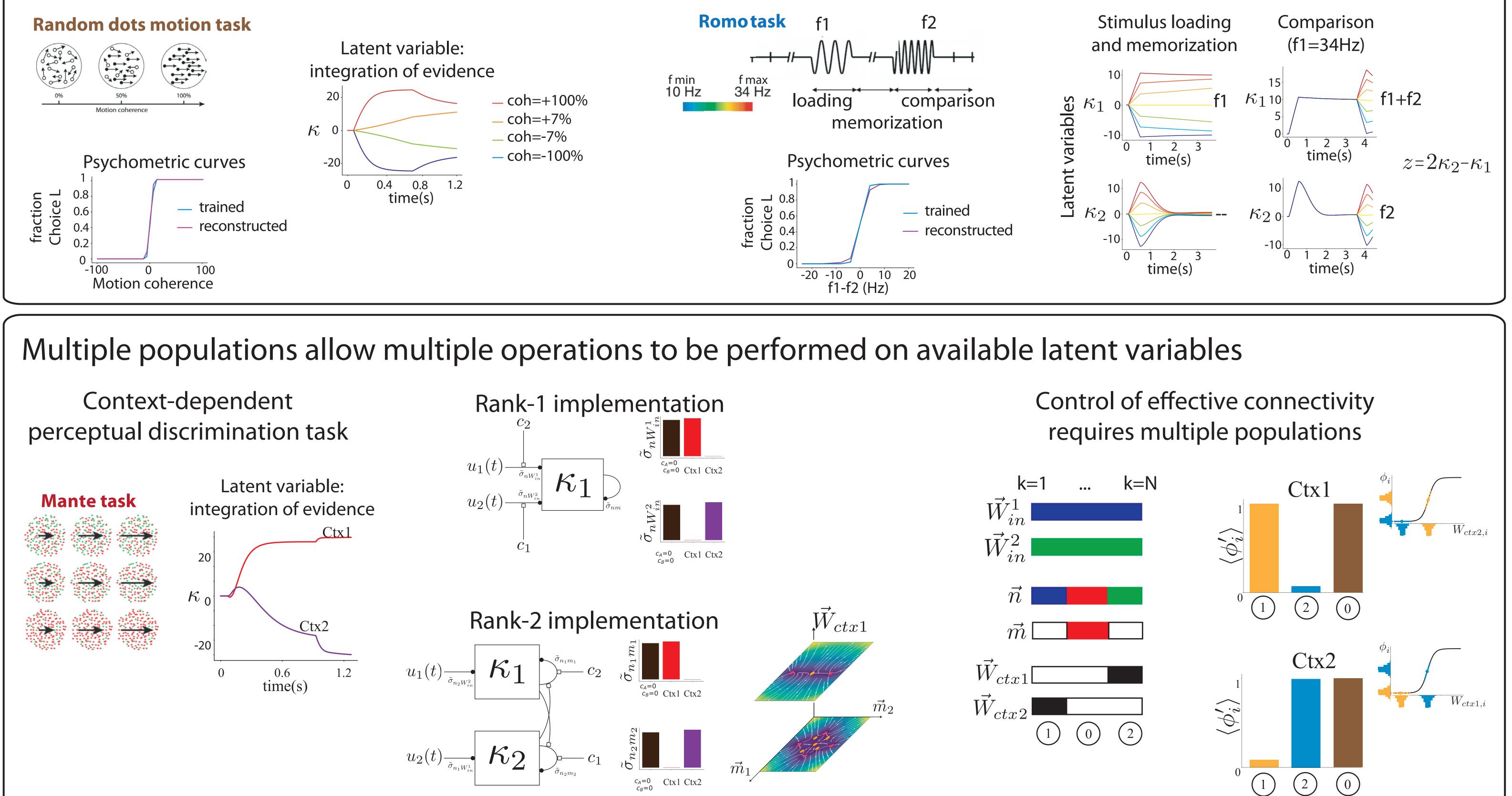
$$a_{i \in p}, b_{i \in p}, ... \sim \vec{\mathcal{N}} (0, \{\sigma_{ab}^{p}\})$$

 $p = 1, ..., P$

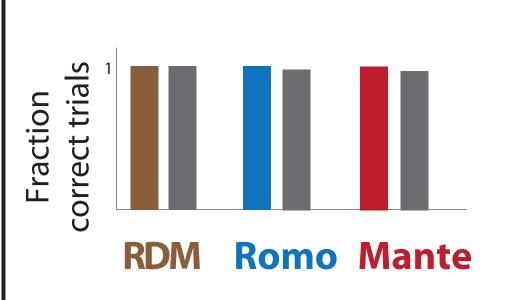
Latent recurrent dynamics (e.g. K=2): $\dot{\kappa}_1 = -\kappa_1 + \tilde{\sigma}_{n_1 m_1} \kappa_1 + \tilde{\sigma}_{n_1 m_2} \kappa_2 + \tilde{\sigma}_{n_1 W_{in}} u(t)$ $\dot{\kappa}_2 = -\kappa_2 + \tilde{\sigma}_{n_2m_1}\kappa_1 + \tilde{\sigma}_{n_2m_2}\kappa_2 + \tilde{\sigma}_{n_2W_{in}}u(t)$ with functional connectivities: $\tilde{\sigma}_{ab} = \sigma_{ab} \langle \phi' \rangle$ or $\tilde{\sigma}_{ab} = \sum \sigma_{ab}^p \langle \phi' \rangle_p$

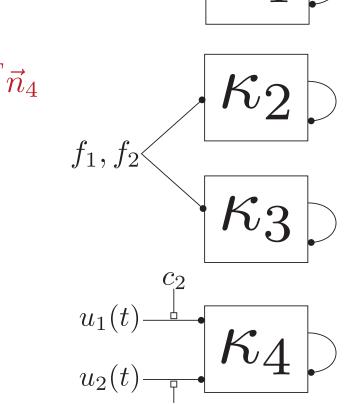
Behavioral task	Cognitive operations	Minimal rank / # of cell classes
Random dot motion task	stimulus integration	K = 1 $P = 1$
Mante task	stimulus integration contextual gating	K = 1 P = 2
Romo task	parametric working memory comparison	K = 2 P = 1
Delay-Match-to-Sample (two items {A,B})	object working memory comparison	K = 2 P = 2

Increasing rank increases the number of internal latent variables available for computation



Implementing multiple tasks Computation u(t) - κ_1 in orthogonal spaces $W_{rec} = \vec{m}_1^T \vec{n}_1 + \vec{m}_2^T \vec{n}_2 + \vec{m}_3^T \vec{n}_3 + \vec{m}_4^T \vec{n}_4$

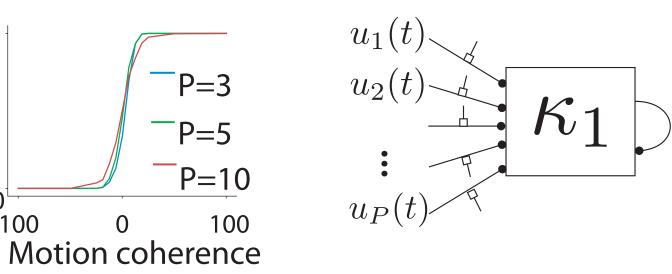




Multiple latent variables perform operations in parrallel: Multiplexing Computations with **P**-populations

fraction Choice l

-100



 $c_A=0$ Ctx1 Ctx2

Multiple possible operations can be performed on a shared latent variable

Summary

- Dimensionality controls the number of latent variables available to implement a computation
- Multiple populations allow network to flexibly switch between different input-output mappings

(1)

• Based on these two principles, we have shown how to design networks solving multiple tasks

Reference

[1] F. Mastrogiuseppe, S. Ostojic. Linking connectivity, dynamics and computations in low-rank recurrent neural networks. Neuron. 2018